

هدف هاى رفتارى

چس از آموزش اين فصل از فراگير انتظار مى رود بتواند: 1- تحليل سازه را تعريف نمايد.
r-
ץ-
ץ
 ¢- تير را تعر يف كرده و بارهاى وار وارد بر آنر آنرا بشناسد. V- ر رفتار تير تحت تأثير بارهاى خارجى رار را بشناسد.

9- نيروهاى داخلى تيرها با بار متمر كز را محاسبه نمايد.

- ا- نمودارهاى نيروى برشى و لنگر خمشى در تيرهاى با بار متمركز را ترسيم

نمايد.
11- أمقادير حداكثر نيروى برشى و لنگر خمشى تيرها با بار متمركز را بددست
آورد.

سازههاى ساختمانى شامل انواع سازههاى قابى، سازههاى پوستهای، سازههاى كابلى وسازههاى خر ايايى مى باشد.
به هر عضو يا مجموعهاى از اعضا كه نيروى وارد شده را تحمل نموده و منتقل نمايد،
سازه كثته مى شود.
بنابراين تيرها ، ستونها باريا بادبندها و ... نيز نوعى سازه مى باشند.
 نيروهاى داخلى و تغيير شكل سازه تحت تاثير نيروهاى خارجى ور وار
 داخلى در اجزای خرپیاهاى صفحهاى و تيرها بسنده مى شـود.

خر پاها سازههايى هستند متشكل از اعضا (ميلههايى) كه در دو انتهاى خود به به صورت مفصل (پين) به يكديگر متصل شده و عموماً تشكيل شبكه هاى مثلثى مى دهند.
 خرپاها به طور كلى به دو گروه تقسيبم مى شوند.

 جديد گسترش مى يابد.

 شش عضو و چهار گره كه يك شبكه فضايى ساخته و با افزودن سه عضو و يك گره جديد گسترش مى يابد.

$$
\frac{\boldsymbol{\Delta}}{r-\Delta \text { شكل }}
$$

همانطور كه گفته شد خرپاهاى ساده از تعدادى شبكه مثلثى تشكيل مى يابند و دليل استفاده از هندسهٔ مثلثى در خرپاها، پايدارى هندسى مثلث نسبت به ساير اشكال هندسى مى باشد. چرا كه در مثلث تغيير زاويه مشروط به تغيير طول اضلاع آن مى باشد و اين تغيير در هندسؤ مثلثى خر ياها به ساد گى اتفاق نمى افتد درحالى كه در يك هندسهٔ چهارضلعى بدون تغيير طول اضلاع
 با توجه به شكل (Qصورت مفصل يا پين به هم متصل شدهاند با وارد آوردن نيروى نه چندان بزر گ F F به راحتى

برای تأمين پايدارى سازه فوق كافى است عضو قطرى BC را به آن بيافزاييم و چهار ضلعى را به دو مثلث تبديل نماييم. (شكل F-Q)

كارعملى: شكل هاى ((
با اعمال نيروى متناسب، عملكرد آنها را با يكديگر مقايسه نماييد.

مى شود. شكل ((a-a)

با توجه به فرضيات فوق، نيروها

براى تحليل خر پاها روشهاى مختلفى وجود دارد كه در اين قسمت به روش تحليل مغاصل

 فلسفه اين روش بر اين اصل استوار است كه چون كل خرپا در حال تعادل است پس هر گره آن نيز بايد در حال تعادل باشد، بنابراين عموماً مراحل تحليل خرپا در اين روش عبارتاست از:

نكته 1- در ترسيم پيكر آزاد گرهها، از گرهاى شروع

مى نمائيم كه بيش از دو مجهول نداشته باشد. نكته Y- بهتر است نيروى داخلى اعضا را ابتدا به صورت كششى فرض نموده و با رسيدن به جواب مثبت اين فرض صحيح بوده و در غير اينصورت عضو مورد نظر فشارى
خواهد بود.

نكته ب- در ترسيم پيكر آزاد هر گره جهت نيروهاى كششى از گره دور شده و جهت نيروهاى فشارى به گره نزديك مى شودر.

تاريخ مهندسى (مطالعه آزاد)
در كتابهاى تاريخ فنى غرب، چنين آمده است كه اولين نوع ساختمانهانهاى خريايى،

: r

جيكر آزاد كره A
$\alpha=\tan ^{-1}\left(\frac{r}{\varphi}\right)=r \varepsilon / \wedge 9^{\circ} \Rightarrow\left\{\begin{array}{l}\sin \alpha=. / \varepsilon \\ \cos \alpha=. / \wedge\end{array}\right.$

$+\uparrow \Sigma \mathrm{F}_{\mathrm{y}}=\cdot \Rightarrow 1 \mathrm{l} / \wedge \mathrm{v}+\mathrm{F}_{\mathrm{AD}} \sin \alpha=\cdot \Rightarrow \cdot / \rho \mathrm{F}_{\mathrm{AD}}=-1 \mathrm{l} / \wedge \mathrm{V}$
$\Rightarrow \mathrm{F}_{\mathrm{AD}}=-19 / \mathrm{V}$ kN فشارى
II از $\Rightarrow \Delta+\cdot / \lambda(-19 / V \Lambda)+F_{A C}=$.

$$
\Rightarrow \mathrm{F}_{\mathrm{AC}}=1 . / \wedge \mathrm{rkN} \text { كششى }
$$

باتو جه به مشخص شدن نيروى داخلى عضو AC مى بينيم كه گره C C نيز داراى دو مجهول BC $\mathrm{F}_{\mathrm{AC}=1 / / \Lambda T} \mathrm{Cl}_{0} \longrightarrow \mathrm{~F}_{\mathrm{BC}}^{\mathrm{F}_{\mathrm{DC}}}$

$$
\Sigma \stackrel{+}{\mathrm{F}_{\mathrm{x}}}=\cdot \Rightarrow \mathrm{F}_{\mathrm{BC}}-1 \cdot / \lambda \mathrm{r}=\cdot \Rightarrow \mathrm{F}_{\mathrm{BC}}=1 \cdot / \lambda \mathrm{r} \mathrm{kN} \text { كششى }
$$

$$
{ }^{+} \uparrow \Sigma \mathrm{F}_{\mathrm{y}}=\cdot \Rightarrow \mathrm{F}_{\mathrm{CD}}=\cdot
$$

- - - - - اعضاى صفر نيرويى

درمثال فوق ملاحظه گرديد كه نيروى داخلى عضو CD برابر صفر است كه اصطلاحاً به آن عضو صفر نيرويى گفته مى شود. در موارد زير اعضاى صفر نيرويى بدون تحليل قابل تشخيص هستند.

الف) هر گاه در گرهاى دو عضو غير همراستا وجود داشته باشد و به آن گره نير تيروى خارجى و يا عكس العمل تكيه گاهى اعمال نشود، هر دو عضو صر صفر نيرويى خوراهي اهند بود. براى نمونه در شكل (ه-9)، اعضاى AB و AD داراى چشنين شرايطى هستند بنابراين عضو صفر نيرويى خواهند بود. يعنى:

$$
\mathrm{F}_{\mathrm{AB}}=\mathrm{F}_{\mathrm{AD}}=\cdot
$$

$$
\frac{\boldsymbol{\Delta}}{9-\Delta}
$$

آيا اين خرپا داراى عضو صفر نيرويى ديگرى مىباشد؟ چرا؟ نام ببريد.

ب) هر گاه در گرهاى سه عضو وجود داشته باشد كه دو عضو آن همر راستا باشند، در صور تى كه نيروى خارجى روى

تحليل تيرها

هدف از تحليل تير در اين فصل تعيين عكس العمل هاى تكيه گاهى و نيروهاى
داخلى در هر مقطع از تير مىباشد.

تير عضوى است كه بارهاى عمود بر محور خود را تحمل و منتقل مىنمايد و در اكثر
سازههاى ساختمانى به كار مى رود.

- r- r-Q
 مختلف روى تكيه گاهها قرار گيرند كه در اين قسمت به معرفى چند نوع از آنها اكتفا مى شود. شكل (ه- (1)

بارها به صورتهاى گار گارناگون به تيرها وار وارد مى گردند كه كه تعدادى از آنها عبارتاند از: الف) بار متمركز

ج) بار گسترده غير يكنواخت

F-Y-Y-Q
هنگامى كه تيرى تحت تأثير نيروهاى خارجى مطابق شكل (Q-
)) واقع مى شود، در آن پديدههاى خمش و برش ايجاد مى گردد. پيده خمش باعث ايجاد كشش و فشار در لايهها يا تارهاى تحتانى و فوقانى تير مى گردد. شكل (ـ-1ء)

پديده برش، رفتارى از تير است كه تمايل دارد تير را در مقاطع مختلف آن قطع نمايد. اين رفتار، شبيه رفتار يك قيحیى مى باشد. شكل (IV-Q)

 براى محاسبه عكس العمل هاى تكيه گاهى تيرها تحت بار گسترده يكنو اخت ابتدا بايد مقدار
 مقدار برآيند بار گسترده برابر مساحت مستطيل بار وارده و محل اثر آن نقطهٔ تلاقى دو قطر مستطيل (نصف طول آن) خواهد بود.
با توجه به موارد فوقالذكر پيكر آزاد تير را ترسيم نموده و عكس العمل هاى تكيه گاهى را

عكسالعمل هاى تكيه گاهى تير شكل زير رامحاسبه نماييد.

الف) ابتدا مقدار برآيند بار گسترده (مساحت مستطيل) را بهدست مى آوريم

$$
P=q \cdot L \Rightarrow P=r \cdot \times 1 / \Delta=r \cdot k N
$$

ب) محل اثر برآيند بار گسترده در نصف طول مستطيل مىباشد كه در بيكر آزاد تير ديده
مى شود.

$\Sigma \stackrel{+}{\stackrel{+}{\mathrm{F}_{\mathrm{x}}}}=\cdot \Rightarrow \mathrm{B}_{\mathrm{x}}=\cdot \quad$ ج با تشكيل معادلات تعادل و حل آنها خواهيم داشت
$+\uparrow \Sigma \mathrm{F}_{\mathrm{y}}=\cdot \Rightarrow \mathrm{A}_{\mathrm{y}}+\mathrm{B}_{\mathrm{y}}-\mathrm{r} \cdot=$.
$\Rightarrow A_{y}+B_{y}=r \cdot k N$ I
${ }^{+}\left(\Sigma \mathrm{M}_{\mathrm{A}}=\cdot \Rightarrow r \cdot \times 1 / \vee \Delta-\mathrm{B}_{\mathrm{y}} \times r / \Delta=\right.$.
$\Rightarrow \mathrm{B}_{\mathrm{y}}=10 \mathrm{kN}$
مقدار
I $\Rightarrow A_{y}+B_{y}=r \cdot \Rightarrow A_{y}+\mid \Delta=r \cdot \Rightarrow A_{y}=1 \Delta \mathrm{kN}$
仿

 a-a تعادل اثر قطعه ديحر را بر روى آن اعمال كرد. به عنوان مثال در شكل (ه-

و مطابق قانون سوم نيوتن همين اثر روى قطعه سمت راست و در جهت مخالف وجود

$$
\begin{aligned}
& \text { دارد. شكل (ه-9 ا) }
\end{aligned}
$$

(V) نيروى برشى - ا-

بنابراين نيروهاى داخلى در هر مقطع از تيرها عبارتند از:
 براى ايجاد يكنواختى در محاسبات نيروهاى داخلى در مقاطع تيرها بهتر است جهت هاى

قطعه سمت چֶٍ

قطعه سمت راست

$$
\frac{\boldsymbol{A}}{r \cdot-a ~}
$$

م- محاسبءُ نيروهاى داخلى تيرها با بار متمر كز براى محاسبهٔ نيروهاى داخلى در هر مقطع، پس از ترسيم پيكر آزاد يكى از قطعات سمت چپ پا راست آن مقطع و قرار دادن نيروى برشى V و لنگر خمشى M M مطابق قرارداد فوق كافى است معادلات تعادل را براى مقطع مورد نظر تشكيل داده و اقدام به حل آنها نماييم.

در تير شكل مقابل مطلوب است: الف) محاسبه عكس العمل هاى تكيه گاهى ب) محاسبه نيروى برشى و لنگر خمشى در مقطع

گام Y) محاسبه عكس العمل هاى تكيه گاهى:

$$
\begin{aligned}
& \stackrel{+}{\Sigma F_{x}}=\cdot \Rightarrow \stackrel{A_{x}=\cdot}{ } \\
& +\uparrow \Sigma F_{y}=\cdot \Rightarrow A_{y}+B_{y}-r \cdot-r \cdot=
\end{aligned}
$$

رابطة

$$
\left(\Sigma \mathrm{M}_{\mathrm{A}}=\cdot \Rightarrow r \cdot \times r+r \cdot \times r-\Delta B_{y}=\right.
$$

$$
\mathrm{B}_{\mathrm{y}}=\mathrm{rr} \mathrm{kN}
$$

I از $\Rightarrow A_{y}+r r=\varepsilon \cdot \Rightarrow A_{y}=r \wedge \mathrm{kN}$

كامץ) براى تعيين نيروهاى داخلى در مقطع C، تير را در اين نقطه به دو قسمت تقسيم نموده و قطعءٔ سمت چچچ را مو رد بر رسى قرار مى دهيم.

گامヶ) تشكيل معادلات تعادل و حل آنها براى اين قطعه

$$
+\uparrow \Sigma \mathrm{F}_{\mathrm{y}}=\cdot \Rightarrow r \wedge-r \cdot-\mathrm{V}_{\mathrm{c}}=\cdot \Rightarrow \mathrm{V}_{\mathrm{c}}=-1 \mathrm{rkN}
$$

$$
\left(\Sigma M_{c}=\cdot \Rightarrow r \wedge \times r-r \cdot \times 1-M_{c}=\right.
$$

$$
\mathrm{M}_{\mathrm{c}}=\mu \psi \mathrm{kN} . \mathrm{m}
$$

مقادير حداكثر نيروهاى برشى و لنگر خمشى در تيرها با بار متمر كز

 حال اين سوال مطرح مى شود كه مقادير نيروى برشى و لنگر خمشى حداكثر در كدام نقطه از طول تير به وجود مى آيد؟

 طول تير را به صورت نمودار نشان داده و از روى نمودار مقادير حداكثر نيروى برشى و لنر لنرا خمشى و محل آنها را تعيين نمود.
 نمودار نيروى برشى و يا لنگر خمشى عبارتاست از نمودارى كه مقادير نيروى برشى و لنگر خمشى را در هر نقطه از تير مشخص نمايد. هدف از ترسيم چنين نمو نقاطى است كه حداكثر نيروى برشى و لنگر خمشى در آنها بهوجود مى آيد .براى رسيدن به
 در هر ناحيه معادلات نيروى برشى و لنگر خمشى را بر حسب طول تير تعيين و سبس نمودار معادلات مذكور ترسيم مى گردد. مراحل ترسيم نمودارهاى نيروى برشى و لنگر خمشى در تير با بار متمركز به شرح
ذيل خواهد بود:

1- محاسبه عكس العمل هاى تكيه گاهى تير
r- مابين هر دو بار متمر كز يكى مقطع به فاصله X از تكيه گاه در نظر گرفته و محدوده را تعيين مىنماييم. عكس العمل هاى تكيه گاهى نيز، بار متمر كز محسوب مى شوند. r- پيكر آزاد يكى از قطعات سمت چپ و و يا راست مقطع مورد نظر را ترسيم
¢
بر حسب X خواهيم رسيد.

نمودارهاى موردنظر دست مى يابيم.

$$
\begin{aligned}
& \text { نمودارهاى نيروى برشى و } \\
& \text { لنگر خمشى تير مقابل را } \\
& \text { ترسيم نمائيد. }
\end{aligned}
$$

1- محاسبه عكس العمل هاى تكيه گاهى با توجه به تقارن تير داريم:

$$
\begin{aligned}
& \stackrel{+}{2 \mathrm{~F}_{\mathrm{x}}}=\cdot \Rightarrow \mathrm{B}_{\mathrm{x}}=\cdot \\
& \mathrm{A}_{\mathrm{y}}=\mathrm{B}_{\mathrm{y}}=\frac{r}{r}=1 \cdot \mathrm{kN}
\end{aligned}
$$

Y- مقطع a-a به فاصله X از تكيه گاه A را در نظر گر فته و محدوده X را مشخص مى نمائيم.

. $\leq x \leq \mu m$

〒- با تشكيل معادلات تعادل براى قطعه فوق خواهيم داشت:

اين معادلات مقادير نيروى برشى و لنگر خمشى را در محدوده مى منايند. عمليات فوق را براى مقطع b-b در محدودهٔ rm داشت:

$$
+\uparrow \Sigma \mathrm{F}_{\mathrm{y}}=\cdot \Rightarrow \mathrm{l} \cdot-\mathrm{r} \cdot-\mathrm{V}_{\mathrm{b}}=.
$$

Ve معادله نيروى برشى در محدودf

$$
{ }^{+} \delta M_{b}=\cdot \Rightarrow I \cdot \times x-r \cdot(x-r)-M_{b}=
$$

$$
M_{b}=1 \cdot x-r \cdot(x-r)
$$

Me معادله لنگر خمشى در محدودة

$$
\begin{aligned}
& +\uparrow \Sigma \mathrm{F}_{\mathrm{y}}=\cdot \Rightarrow \mathrm{l} \cdot-\mathrm{V}_{\mathrm{a}}=. \\
& \text { م } \\
& { }^{+}{ }^{\Sigma} \mathrm{M}_{\mathrm{a}}=\cdot \Rightarrow 1 \cdot \times \mathrm{x}-\mathrm{M}_{\mathrm{a}}=.
\end{aligned}
$$

ه- اكنون نمودار نيروى برشى را با استفاده از معادلات I و III ترسيم مىنمائيم.
(I) $\quad \mathrm{V}_{\mathrm{a}}=1 \cdot \mathrm{kN} \quad \cdot \leq \mathrm{x} \leq \mathrm{m} \mathrm{m}$
(III) $\mathrm{V}_{\mathrm{b}}=-1 \cdot \mathrm{kN} \quad r \mathrm{~m} \leq \mathrm{x} \leq 9 \mathrm{~m}$
¢- نمودار لنغر خمشى را با استفاده از معادلات II و IV و بهروش نقطهيابى در نقاط ابتدا و انتهاى هر ناحيه ترسيم مى كنيم.

(II) $\quad M_{a}=1 \cdot x \quad . \leq x \leq r m$ | $x(\mathrm{~m})$ | $\mathrm{M}(\mathrm{kN} . \mathrm{m})$ |
| :---: | :---: |
| \cdot | \cdot |
| r | r. |

(IV) $\quad \mathrm{M}_{\mathrm{b}}=9 \cdot-1 \cdot \mathrm{x} \quad r \mathrm{~m} \leq \mathrm{x} \leq 9 \mathrm{~m}$

$$
\begin{array}{l|l}
\mathrm{x}(\mathrm{~m}) & \mathrm{M}(\mathrm{kN.m}) \\
\hline r & r \cdot \\
\epsilon & \cdot
\end{array}
$$

در تير شكل مقابل مطلوباست: الف- ترسيم دياگرام نيروى برشى تير ب- ترسيم دياگرام لنگر خمشى تير ج- تعيين نيروى برشى و لنگر خمشى حداكثر تير.

الف) محاسبه عكس العمل هاى تكيه كاهى

$\Sigma \stackrel{+}{\mathrm{F}_{\mathrm{x}}}=\cdot \Rightarrow \mathrm{A}_{\mathrm{x}}=\cdot$
$+\uparrow \Sigma \mathrm{F}_{\mathrm{y}}=\cdot \Rightarrow \mathrm{A}_{\mathrm{y}}-\Gamma \uparrow-\uparrow \cdot=\cdot \Rightarrow \mathrm{A}_{\mathrm{y}}=\Delta \varphi \mathrm{kN}$
${ }^{+}\left(\Sigma M_{A}=\cdot \Rightarrow-M_{A}+r \varphi x \cdot / \Delta+r \cdot x\right) / r \cdot=\cdot \Rightarrow M_{A}=9 \cdot \mathrm{kN} . \mathrm{m}$

$$
\begin{aligned}
& \cdot \leq x \leq \cdot / \Delta \quad \cdot / \omega \leq x \leq 1 / \tau \\
& \text { a-a مقطع } \\
& +\uparrow \Sigma \mathrm{F}_{\mathrm{y}}=\cdot \Rightarrow \Delta \uparrow-\mathrm{V}_{\mathrm{a}}=\cdot \Rightarrow \mathrm{V}_{\mathrm{a}}=8 \varphi \mathrm{kN} \quad \cdot \leq \mathrm{x} \leq \cdot / \Delta \\
& \stackrel{+}{ } \quad \Sigma \mathrm{M}_{\mathrm{a}}=\cdot \Rightarrow-\mathrm{M}_{\mathrm{a}}+44 \mathrm{x}-\mathrm{M}_{\mathrm{A}}=\Rightarrow \Rightarrow \mathrm{M}_{\mathrm{a}}=44 \mathrm{x}-4 . \\
& \text { معادلات نيروى برشى و لنگر خمشى در ناحيه BC (} \\
& \text { b-b مقطع } \\
& +\uparrow \Sigma \mathrm{F}_{\mathrm{y}}=\cdot \Rightarrow \varepsilon \varphi-\uparrow \uparrow-\mathrm{V}_{\mathrm{b}}=\cdot \Rightarrow \mathrm{V}_{\mathrm{b}}=\uparrow \cdot \mathrm{kN} \quad \cdot / \Delta \leq \mathrm{x} \leq 1 / \uparrow \\
& { }^{+}\left(\Sigma \mathrm{M}_{\mathrm{b}}=\cdot \Rightarrow-\mathrm{M}_{\mathrm{b}}-\mathrm{M}_{\mathrm{A}}+\varphi \varphi \times \mathrm{x}-\mathrm{Y}_{\mathrm{f}}(\mathrm{x}-\cdot / \Delta)=.\right. \\
& \Rightarrow \mathrm{M}_{\mathrm{b}}=4 \mu \mathrm{x}-\mathrm{H}_{\mathrm{H}}(\mathrm{x}-\cdot / \Delta)-9 \text {. } \\
& M_{b}=f \cdot x-\mu \wedge \quad \cdot / \Delta \leq x \leq 1 / r
\end{aligned}
$$

نمودار نيروى برشى نمودار لنعر خمشى

ج) با توجه به نمودار، حداكثر نيروى برشى و لنگر خمشى در تكيهكاه قرار دارد و مقدار آن برابر است با:

$$
\begin{aligned}
& \mathrm{V}_{\text {max }}=94 \mathrm{kN} \\
& \mathrm{M}_{\text {max }}=9 \cdot \mathrm{kN} . \mathrm{m}
\end{aligned}
$$

نتيجه: در تيرهاى كنسولى حداكثر نيروى برشى و لنگر خمشى در تكيه كاه بهوجود مىآيد.

خلاصهٔ فصل

- خر پاها به دو گروه كلى صفحهاى و فضايى تقسيم مى شوند. - خر پاها تشكيل شبكئ مثلثى مى دهند.

 تكيه كاهى آن مى باشد.

- در گرههاى داراى دو عضو غير همراستا در صورتى كه نيروى خاري ارجى وجود نداشته باشد هر دو عضو صفر نيرويى خواهراهند بود. - در گرههاى داراى سه عضو كه دو عضو آنهر آنها همراستا باريا باشند، در صورت عدم وجود نيروى خارجى در آن گره، عضو سوم، صفر نيرويى خواهد بود
 تير مى باشد.

 - مقدار برآيند بارهاى گسترده يكنواخت - محل اثر برآيند بارهاى گسترده يكنواخت در محل تلاقى دو قطر مستطيل بار وارده مى باشد.

ץ- در خر پاهاى زير نيروهاى داخلى اعضا را محاسبه نماييد.

(الف)

(ب)

(ج)

$$
\begin{aligned}
& \text { r- } \\
& \text { اولاً: اعضاى صفر نيرويى را تعيين كنيد. } \\
& \text { ثانياً: نيروى داخلى ساير اعضا را محاسبه كنيد. }
\end{aligned}
$$

† ¢- در خر پاهاى زير اعضاى صفر نيرويى را مشخص نماييد.

(الف)

(ب)

ه- عكس العمل هاى تكيه گاهى تيرهاى زير را بهدست آوريد.

(الف)

(ب)

(د)
(ج)
| ¢- در تيرهاى زير مطلوباست:
 ب) تعيين محل لنغر خمشي حداكثر ج) تعيين مقادير حداكثر نيروى برشى و لنگر خمشى تير

(الف)

(ب)

($)$

