فصر
هفتم
ننش نيرو وحورى

هدف هاى رفتارى

پس از آموزش اين فصل از فراگير انتظار مى رود بتواند: ا-انواع رفتار اجسام را تحت تأثير بارهاى مختلف نام ץ-نيروهاى محورى را شرح دهد. ץ-اثر نيروهاى محورى را بر اجسام توضيح دهدر † †-تنش را تعريف نمايد.
ه-تنش محورى را تعريف نمايد.
צ-رابطئ تنش محورى را به كار گيرد.
V-تغيير طول اجسام تحت تأثير بارهاى محورى را محاسبه نمايد.

در بخش اول كتاب به بررسى نيروهاى وارد بر اجسام پرداختيم و اجسام را صلب
 استاتيك بود.
دراين بخش مى خواهيم اثر نيروها را بر اجسام، بيشتر مورد بر رسى قرا
آنها را تحت تاثير نيروهاى مختلف تجزيه و تحليل نماييم، كه با اين فرض كه نباشد، يعنى تغيير شكل اجسام نيز مد نظر مىباشد، كه موضوع بحث میاي مقاومت مصالح است. بنابراين مقاومت مصالح شاخه ای از علم مكانيك است كه رفتار اجسام جامد را تحت بار گذارى هاى مختلف بر رسى مى نمايد. رفتار اجسام تحت بار هاى مختلف عبار تند از : ا- رفتار كششى و فشارى

نيروهاى محورى \square $1-V$
(Axial Load)
نيروهاى محورى، نيروهايى هستند كه در امتداد محور طولى اجسام و عمود بر سطح مقطع آنها وارد مى شوند. شكل (نيروهاى محورى مى توانند به صورت
 آنها افزايش يا كاهش طول ايجاد نمايند. همانطور كه در شكل (Y-Y) ديده مى شود، بارهاى محورى ضمن افزايش يا كاهش طول، سبب كاهش يا افزايش ابعاد ديخر جـر نيز مىشوند كه در اين فصل تنها به بررسى رفتار طولى آنها مى پردازيم.

P (V-V) را در نظر بغيريد كه تحت تاثير نيروى كششى P

> واقع شده است.

به نظر شما اثر نيروى P در يكى مقطع دلخواه مانند (a-a) به چه صورت خواهد بود؟

در پاسخ به اين سوال بايد اينطور تصور نمود كه هر ذره جسم در مقطع (a-a) (a) مقدارى از نيروى P را تحمل مى نمايد و اثر اين نيرو در مقطع (a-a)، مطابق شكل (A-Y)، به صورت نيروهاى گسترده ديده مى شود.

$\frac{\boldsymbol{\Delta}}{1-V \text { ش }}$
به اين نيروهاى گسترده موجود در سطح مقطع (a-a) تنش گفته مى شود. بنابراين مى توان كفت:
(نيروى وارد به واحد سطح، تنش ناميده مى شود)]

چنانچه نيروى وارده نيروى محورى باشد، تنش ايجاد شده را تنش محورى ناميده و
با رابطه زير تعريف مى شود.

$$
\begin{equation*}
\sigma=\frac{ \pm \mathrm{P}}{\mathrm{~A}} \tag{1-v}
\end{equation*}
$$

$$
\begin{aligned}
& \text { o : تنش محورى (فشارى يا كششى) } \\
& \text { P ن } \\
& \text { A }
\end{aligned}
$$

 نكته: هماهنگى با آئين نامه ها در محاسبات از واحد اگر نيروى محورى (P) كششى باشد تنش ايـجادشده تنش كششى خواهد بود و σ مثبت مىباشد. اگر نيروى محورى (P) فشارى باشد تنش ايجادشده تنش فشارى خواهد بود و σ منفى مىباشد.

ستونى كوتاه مطابق شكل روبهرو تحت تاثير نيروى محورى P=ra•KN قرار دارد. مطلوباست محاسبه تنش در پاى ستون (از وزن ستون صرف نظر شود).

$A=\frac{\pi d^{r}}{\mu}=\frac{\pi \times r \cdot .^{r}}{\varphi^{r}}=r / r \cdots \mathrm{~mm}^{r}$
$\sigma=\frac{P}{A}=\frac{-r \Delta \cdot \cdots}{r / r \cdot \cdots} \Rightarrow \sigma=-v / q я \frac{\mathrm{~N}}{\mathrm{~mm}^{r}} \mathrm{~L} \mathrm{MPa}$
علامت منفى نشانغر آناست كه تنش محورى ايجاد شده فشارى مىباشد. در صورتى كه جسم داراى مقطع متفاوت باشد (شكل Y-9- الف) و يا بار گذارى در نقاط مختلف آن انجام شود (شكل V-q- ب) تنش در هر قسمت از جسم متفاوت بوده و بايد نيرو و مساحت هر قسمت را جداگانه تعيين و از رابطء (I-V) تنش را در هر قسمت محاسبه

(الف)

جسمى مطابق شكل تحت تأثير نيروهاى نشانداده شده قرار دارد. مطلوباست محاسبئ تنش در هر قسمت از جسم.

r-r
حل:

$$
\left\{\begin{array}{l}
\mathrm{P}=r \cdot \mathrm{KN}=r \cdots \mathrm{~N} \\
\mathrm{~A}=\frac{\pi \mathrm{D}^{r}}{r}=\frac{r / 1 r \times \Delta \cdot \cdot^{r}}{r}=198 r / \Delta \mathrm{mm}^{r}
\end{array}\right.
$$

الف) تنش در مقطع 1-1

$$
\sigma_{1}=\frac{\mathrm{P}}{\mathrm{~A}}=\frac{r \cdots}{199 \mathrm{r} / \mathrm{D}} \Rightarrow \sigma_{1}=1 . / 19 \mathrm{MPa}
$$

ب) تنش در مقطع Y-Y
با توجه به شكل بر آيند نيروهاى وارد به مقطع (Y-Y) برابر است با:
$\left\{\begin{array}{l}P=-1 \Delta-1 \Delta+r \cdot=-1 \cdot K N=-1 \cdots \mathrm{~N} \\ A=\frac{\pi D^{r}}{r}-\frac{\pi d^{r}}{r}=\frac{r / 1 \uparrow \times \lambda \cdot{ }^{r}}{r}-\frac{r / 1 \psi \times \Delta \cdot^{r}}{r}=r \cdot q 1 / \Delta \mathrm{mm}^{r}\end{array}\right.$
यIIF $\sigma_{r}=\frac{P}{A}=\frac{-1 \cdots \cdots}{r . c 1 / D} \Rightarrow \sigma_{r}=-r / \zeta \vee \mathrm{MPa}$ فشارى

قطعه پيوسته ای مطابق شكل تحت تاثير نيروى كششى P قرار گر فته است، هر گاه نيروى ا را به آرامى افزايش دهيم، احتمال گسيختگى در كدام يكى از نواحى a وb وc بيشتر است؟ چرا؟

جواب:

با توجه به اين كه مقدار P در هر سه ناحيه ثابت است، با افزايش تدريجى نيروى P مطابق رابطه $\sigma=\frac{ \pm P}{A}$

تغيير طول اجسام تحت تاثير بارهاى محورى

 كششى P به آن وارد شود، سبب افزايش طول ميله به اندازء (($)$ خواهد شد شد كه مقدار آن از رابطه
زير تعيين مى شود. شكل (V-• ا- ب)

$$
\Delta \mathrm{L}=\frac{\mathrm{P} . \mathrm{L}}{\mathrm{~A} . \mathrm{E}}
$$

در اين رابطه E ضريب ارتجاعى (مدول الاستيسيته) جسم مى باشد كه به به جنس آر آن بستگى دارد و در آزمايشگاه مقاومت مصالح مقدار آن تعيين مى الـود و و واحد آن نيز همان واحد تنش يعنى $\frac{\mathrm{N}}{\mathrm{mm}^{「}}$

درجدول (1-) ضريب ارتجاعى بعضى از مصالح آورده شده است.

جدول (1-V) ضريب ارتجاعى مصالح	
	مصالح
$r \times 1.0$	فولاد
1/1 $\times 1.0$	چدن
- $/ \mathrm{V} \times 1 \cdot 0$	آلومينيوم
1×1.0	مس

مطلوباست تنيير طول ميله فولادى مطابق شكل زير؛ اگر ضريب ارتجاعى ميله . $\mathrm{E}=r \times 1 . \Delta \frac{\mathrm{N}}{\mathrm{mm}^{r}}$

$$
P=p v|K N=\psi v| \ldots N
$$

$\mathrm{L}=\hat{C} \cdot \mathrm{~cm}=\hat{\mathrm{C}} \cdot \mathrm{mm}$
$\mathrm{A}=\frac{\pi \mathrm{D}^{r}}{r}=\frac{r / / \mu \times r \cdot \cdot^{r}}{r}=r / \mu^{r} \mathrm{~mm}^{r}$
$E=r \times 1 \cdot \Delta \frac{N}{\mathrm{~mm}^{r}}$
$\Delta \mathrm{L}=\frac{\mathrm{P} . \mathrm{L}}{\mathrm{A} . \mathrm{E}}=\frac{\mu v \mid \cdots \times 1 \cdot \cdot}{\mu \mid \mu \times r \times 1 \cdot{ }^{\circ}} \Rightarrow \Delta \mathrm{L}=я \mathrm{~mm}$

اگر در شكل (Y-V) نيروى P فشارى باشد، اين نيرو سبب كاهش طول ميلةٔ مى گردد كه مقدار آن از همان رابطءٔ (Y-Y) محاسبه مى شود
چنانحֶه جسم داراى مقطع و يا جنس يكنواخت نباشد و يا بار گذارى در نقاط مختلف
 انجام شود در اين صورت آنرا به بخش هاى مختلف تقسيم نموده

$$
\Delta \mathrm{L}=\sum_{\mathrm{i}=1}^{\mathrm{n}} \frac{\mathrm{P}_{\mathrm{i}} \cdot \mathrm{~L}_{\mathrm{i}}}{\mathrm{~A}_{\mathrm{i}} \cdot \mathrm{E}_{\mathrm{i}}}
$$

مى نماييم يعنى:

تغيير طول كلى جسم فولادى مطابق شكل زير را محاسبه كنيد.

$$
\left(E=r \times 1 \cdot \stackrel{N}{\mathrm{~mm}^{r}}\right)
$$

حل:
تهنير طول كلى جسم برابر است با جمع جبرى تغيير طول هر يك از طططات (1) و (1) $\Delta \mathrm{L}_{\mathrm{t}}=\Delta \mathrm{L}_{\mathrm{r}}+\Delta \mathrm{L}_{\mathrm{r}}$

الف) تغيير طول قطعه شماره (:
P ${ }_{1}=-1 r \cdot K N=-1 r \cdot \cdots N$ فيروى P
$\mathrm{L}_{1}=\mathrm{V} \Delta \mathrm{cm}=\mathrm{V} \Delta \cdot \mathrm{mm}$
$A_{1}=\frac{\pi D_{1}^{r}}{r}=\frac{r / 1 \varphi \times 1 \cdot{ }^{r}}{r}=r \wedge / \Delta \mathrm{mm}^{r}$
$E=r \times 1 \cdot \Delta \frac{\mathrm{~N}}{\mathrm{~mm}^{r}}$
$\Delta L_{1}=\frac{P_{1} \cdot L_{1}}{A_{1} \cdot E_{1}}=\frac{-1 r \cdots \cdots \times v \Delta \cdot}{V \Lambda / \Delta \times r \times 1 \cdot{ }^{\Delta}}$
$\Delta L_{1}=-\Delta / V r \mathrm{~mm}$ با توجه به علامت منفى، طول قطعهٔ (1 كاهش مى يابد.
$P_{r}=r \cdots+r \cdots-I r \cdot=r \wedge \cdot K N=r \wedge \cdots N$
ب) تغيير طول قطعه شماره r:
$L_{r}=1 r \cdot \mathrm{~cm}=1 r \cdot \mathrm{~mm}$
$A_{r}=\frac{\pi D_{r}^{r}}{r}=\frac{r / 1 \varphi \times r . .^{r}}{r}=v .9 / \Delta \mathrm{mm}^{r}$
$E=r \times 1 \cdot \Delta \frac{N}{\mathrm{~mm}^{r}}$
$\Delta L_{r}=\frac{P_{r} \cdot L_{r}}{A_{r} \cdot E_{r}}=\frac{r \wedge \cdots \times / r \cdot .}{V \cdot q / \Delta \times r \times 1 \cdot{ }^{\circ}}$
$\Delta \mathrm{L}_{\mathrm{r}}=r / r \wedge \mathrm{~mm}$
(1) افزايش طول قطعئ

تغيير طول كلى جسم برابر است با:
$\Delta \mathrm{L}_{\mathrm{t}}=\Delta \mathrm{L}_{1}+\Delta \mathrm{L}_{\mathrm{r}}=-\Delta / \gamma r+r / r \wedge \Rightarrow \Delta \mathrm{~L}_{\mathrm{t}}=-r / r \Delta \mathrm{~mm}$
| با توجه به علامت منفى، طول كل جسم كاهش مى يابد.
خلاصئ فصل

- اجسام تحت تأثير نيروهاى مختلف، رفتارهاى متفاوتى مانند رفتار كششى، فشارى، برشى و ... از خود نشان مىدهند.
- نيروى محورى نيرويى است كه در امتداد محور طولى اجسام و عمود بر سطح مقطع آنها وارد مى شود.
- نيروى وارد به واحد سطح را تنش مىنامند.
- تنش محورى با رابطءٔ $\sigma=\frac{ \pm P}{A}$ تعريف مى شود و بر سطح مقطع جسم عمود است.
- واحد تنش در سيستم SI عبارت است از
- نيروهاى محورى در اجسام، كاهش يا افزايش طول ايجاد مىنمايند كه از رابطهٔ زير به

$$
\Delta \mathrm{L}=\frac{\mathrm{P} . \mathrm{L}}{\mathrm{~A} . \mathrm{E}} \quad \mathrm{د} \text { دت مى آيد: }
$$

- تغيير طول كلى اجسام از رابطئ زير به دست مى آيد:

$$
\Delta \mathrm{L}=\sum_{\mathrm{i}=1}^{\mathrm{n}} \frac{\mathrm{P}_{\mathrm{i}} \cdot \mathrm{~L}_{\mathrm{i}}}{\mathrm{~A}_{\mathrm{i}} \cdot \mathrm{E}_{\mathrm{i}}}
$$

E ضريب ارتجاعى يا مدول الاستيسيته اجسام به جنس آنها بستگى داشته و با نماد نمايش داده مى شود و واحد آن، واحد تنش يعنى
 محاسبئ تنش محورى كابل. r- ستونى مطابت شكل زير تحت تأثير بار محورى . . H كيلونيوتن قرار دارد. مطلوباست محاسبئ تنش در پاى ستون (از وزن ستون صرفنظر شود).

r- ستونى از جنس بتن با مقطع دايره مطابق شكل تحت تأثير سه نيرو قرار دارد. مطلوباست
محاسبئ قطر هر يك از دو عضو فوقانى و تحتانى، در صورتى كه خواسته باشيم تنش در هر عضو از MPa ^ تجاوز نكند (از وزن اعضا صرفـنظر
f قطر داخلى Y Y . . mm اثر مى كند. مطلوباست محاسبئ تنش فشارى در ستون.

 تنش زير صفحه MPa ه ه باشد، مطلوباست محاسبئ ابعاد كفـ ستون در صور تى كه، صفحئ

كفـستون: الف) مربع باشد ب) نسبت طول به عرض آن ه/ ال باشد ج) دايره باشد.

 در نظر باشد تنش در زير صفحه، حداكثر به MPa (محدود شود، مطلوباست محاسبةٔ: الف) ابعاد صفحه كفـ ستون؛ ب) تنش در مقطع ستونك؛ ج) تنش در زير ديوار در صورتى كه طول ديوار m 1 باشد (از وزن ديوار صرفنظر شود).

V

